FINAL JEE–MAIN EXAMINATION – FEBRUARY, 2021
(Held On Wednesday 24th February, 2021) TIME : 9 : 00 AM to 12 : 00 NOON

MATHEMATICS

SECTION-A

1. The statement among the following that is a tautology is :
 (1) $A \lor (A \land B)$
 (2) $A \land (A \lor B)$
 (3) $B \rightarrow [A \land (A \rightarrow B)]$
 (4) $[A \land (A \lor B)] \rightarrow B$

 Official Ans. by NTA (4)

 Sol. $(A \land (A \rightarrow B)) \rightarrow B$
 $(A \land (\neg A \lor B)) \rightarrow B$
 $= (A \land B) \rightarrow B$
 $= (A \lor B) \land B$
 $= (A \lor B) \lor B$
 $= \bot \lor B$
 $= B$

2. A man is walking on a straight line. The arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes is $\frac{1}{4}$. Three stones A, B and C are placed at the points (1,1), (2,2) and (4,4) respectively. Then which of these stones is / are on the path of the man ?
 (1) A only
 (2) C only
 (3) All the three
 (4) B only

 Official Ans. by NTA (4)

 Sol. Let the line be $y = mx + c$
 x-intercept : $-\frac{c}{m}$
 y-intercept : c
 A.M of reciprocals of the intercepts : $\frac{-\frac{c}{m} + \frac{1}{c}}{2} = \frac{1}{4} \Rightarrow 2(1 - m) = c$

3. The equation of the plane passing through the point (1, 2, -3) and perpendicular to the planes $3x + y - 2z = 5$ and $2x - 5y - z = 7$, is
 (1) $3x - 10y - 2z + 11 = 0$
 (2) $6x - 5y - 2z - 2 = 0$
 (3) $11x + y + 17z + 38 = 0$
 (4) $6x - 5y + 2z + 10 = 0$

 Official Ans. by NTA (3)

 Sol. Normal vector : $[\hat{i}, \hat{j}, \hat{k}]$
 $3 \ 1 \ -2 = -11\hat{i} - \hat{j} + 17\hat{k}$
 $2 \ -5 \ -1$

 So drs of normal to the required plane is $<11, 1, 17>$
 plane passes through (1, 2, -3)

4. The population $P = P(t)$ at time ‘t’ of a certain species follows the differential equation
 $\frac{dP}{dt} = 0.5P - 450$. If $P(0) = 850$, then the time at which population becomes zero is :
 (1) $\log_e 18$
 (2) $\log_9 18$
 (3) $\frac{1}{2} \log_e 18$
 (4) $2 \log_e 18$

 Official Ans. by NTA (4)

 Sol. $\frac{dP}{dt} = 0.5P - 450$
 $\Rightarrow \int_0^t \frac{dp}{P - 900} = \int_0^t \frac{dt}{2}$
 $\Rightarrow \left[\ln |P(t) - 900| \right]_0^t = \left[\frac{t}{2} \right]_0^t$
5. The system of linear equations

\[\begin{align*}
3x - 2y - kz &= 10 \\
2x - 4y - 2z &= 6 \\
x + 2y - z &= 5m
\end{align*} \]

is inconsistent if:

(1) \(k = 3, \ m = \frac{4}{5} \)

(2) \(k \neq 3, \ m \in \mathbb{R} \)

(3) \(k \neq 3, \ m \neq \frac{4}{5} \)

(4) \(k = 3, \ m \neq \frac{4}{5} \)

Official Ans. by NTA (4)

Sol.

For inconsistent:

\[\begin{align*}
\Delta &= \begin{vmatrix}
3 & -2 & -k \\
2 & -4 & -2 \\
1 & 2 & -1
\end{vmatrix} = 0 \\
\Delta_x &= \begin{vmatrix}
10 & -2 & -3 \\
6 & -4 & -2 \\
5m & 2 & -1
\end{vmatrix} = 10(8) - 2(-10m + 6) - 3(12 + 20m) = 8(4 - 5m) \\
\Delta_y &= \begin{vmatrix}
3 & 10 & -3 \\
2 & 6 & -2 \\
1 & 5m & -1
\end{vmatrix} = 3(-6 + 10m) + 10(0) - 3(10m - 6) = 0 \\
\Delta_z &= \begin{vmatrix}
3 & -2 & 10 \\
2 & -4 & 6 \\
1 & 2 & 5m
\end{vmatrix} = 3(-20m - 12) - 2(6 - 10m) + 10(8) = 40m - 32 = 8(5m - 4)
\end{align*} \]

for inconsistent:

\[k = 3 \text{ & } m \neq \frac{4}{5} \]

6. If \(f : \mathbb{R} \to \mathbb{R} \) is a function defined by

\[f(x) = [x - 1]\cos \left(\frac{2x - 1}{2} \right) \pi \]

where \([.]\) denotes the greatest integer function, then \(f \) is:

(1) discontinuous at all integral values of \(x \) except at \(x = 1 \)

(2) continuous only at \(x = 1 \)

(3) continuous for every real \(x \)

(4) discontinuous only at \(x = 1 \)

Official Ans. by NTA (3)

Sol.

For \(x = n, n \in \mathbb{Z} \):

LHL = \[\lim_{x \to n^-} f(x) = \lim_{x \to n^-} [x - 1]\cos \left(\frac{2x - 1}{2} \right) \pi \]

= 0

RHL = \[\lim_{x \to n^+} f(x) = \lim_{x \to n^+} [x - 1]\cos \left(\frac{2x - 1}{2} \right) \pi \]

= 0

\(f(n) = 0 \)

\[\Rightarrow \text{LHL = RHL = } f(n) \]

\(\Rightarrow f(x) \text{ is continuous for every real } x. \)

7. The distance of the point \((1, 1, 9) \) from the point of intersection of the line

\[\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2} = t \]

and the plane \(x + y + z = 17 \) is:

(1) \(2\sqrt{19} \)

(2) \(19\sqrt{2} \)

(3) \(38 \)

(4) \(\sqrt{38} \)

Official Ans. by NTA (4)

Sol.

Let \(\frac{x - 3}{1} = \frac{y - 4}{2} = \frac{z - 5}{2} = t \)

\[\Rightarrow \ x = 3 + t, \ y = 2t + 4, \ z = 2t + 5 \]

for point of intersection with \(x + y + z = 17 \)

\[3 + t + 2t + 4 + 2t + 5 = 17 \]

\[\Rightarrow 5t = 5 \Rightarrow t = 1 \]

\[\Rightarrow \text{point of intersection is } (4, 6, 7) \]

distance between \((1, 1, 9) \) and \((4, 6, 7) \)

is \(\sqrt{9 + 25 + 4} = \sqrt{38} \)
8. If the tangent to the curve \(y = x^3 \) at the point \(P(t, t^3) \) meets the curve again at \(Q \), then the ordinate of the point which divides \(PQ \) internally in the ratio 1 : 2 is :

(1) \(-2t^3\)
(2) 0
(3) \(-t^3\)
(4) \(2t^3\)

Official Ans. by NTA (1)

Sol. Slope of tangent at \(P(t, t^3) \) = \(\frac{dy}{dx} \) _at_ \(t \)

\[
= (3x^2)_{x=t} = 3t^2
\]

So equation tangent at \(P(t, t^3) \) :

\[
y - t^3 = 3t^2(x - t)
\]

for point of intersection with \(y = x^3 \)

\[
x^3 - t^3 = 3t^2x - 3t^3
\]

\[
\Rightarrow (x - t)(x^2 + xt + t^2) = 3t^2(x - t)
\]

for \(x \neq t \)

\[
x^2 + xt + t^2 = 3t^2
\]

\[
\Rightarrow x^2 + xt - 2t^2 = 0
\]

\[
\Rightarrow (x - t)(x + 2t) = 0
\]

So for \(Q : x = -2t \)

\[
Q(-2t, -8t^3)
\]

ordinate of required point :

\[
\frac{-2t^3 - 8t^3}{2 + 1} = -2t^3
\]

9. If \(\int \frac{cos x - sin x}{\sqrt{8 - sin 2x}} dx = a \sin^{-1} \left(\frac{sin x + cos x}{b} \right) + c \), where \(c \) is a constant of integration, then the ordered pair \((a, b)\) is equal to :

(1) \((-1, 3)\)
(2) \((3, 1)\)
(3) \((1, 3)\)
(4) \((1, -3)\)

Official Ans. by NTA (3)

Sol. \(\int \frac{cos x - sin x}{\sqrt{8 - sin 2x}} dx = \int \frac{cos x - sin x}{\sqrt{9 - (sin x + cos x)^2}} dx \)

Let \(sinx + cos x = t \)

\[
\int \frac{dt}{\sqrt{9-t^2}} = \sin^{-1} \left(\frac{t}{3} \right) + c
\]

\[
= \sin^{-1} \left(\frac{sin x + cos x}{3} \right) + c
\]

So \(a = 1, b = 3 \).

10. The value of \(-15C_1 + 2.15C_2 - 3.15C_3 + \ldots\)

\(-15, 15C_{15} + 14C_1 + 14C_3 + 14C_5 + \ldots + 14C_{11} \) is :

(1) \(2^{16} - 1\)
(2) \(2^{13} - 14\)
(3) \(2^{14}\)
(4) \(2^{13} - 13\)

Official Ans. by NTA (2)

Sol. \((-15C_1 + 2.15C_2 - 3.15C_3 + \ldots\)

\(-15, 15C_{15} + 14C_1 + 14C_3 + 14C_5 + \ldots + 14C_{11} \)

\[= \sum_{r=1}^{15} (15r - 15C_r + \ldots + 14C_r) - 15C_0\]

\[= \sum_{r=1}^{15} (-1)^{r+1} 15 \cdot 14C_{r-1} + 2^{13} - 14\]

\[= 15(-14C_0 + 14C_1 + \ldots - 14C_{14}) + 2^{13} - 14\]

\[= 2^{13} - 14\]

11. The function \(f(x) = \frac{4x^3 - 3x^2}{6} - 2 \sin x + (2x - 1) \cos x \) :

(1) increases in \(\left[\frac{1}{2}, \infty \right) \)

(2) increases in \(\left(-\infty, \frac{1}{2} \right) \)

(3) decreases in \(\left[\frac{1}{2}, \infty \right) \)

(4) decreases in \(\left(-\infty, \frac{1}{2} \right) \)

Official Ans. by NTA (1)

Sol. \(f(x) = \frac{4x^3 - 3x^2}{6} - 2 \sin x + (2x - 1) \cos x \)

\[
f'(x) = (2x^2 - x) - 2 \cos x + 2 \cos x - \sin x(2x - 1)
\]

\[= (2x - 1)(x - \sin x)\]

for \(x > 0, x - \sin x > 0 \)

\[
x < 0, x - \sin x < 0
\]

for \(x \in (-\infty, 0] \cup \left[\frac{1}{2}, \infty \right), f'(x) \geq 0 \)

\[
\Rightarrow f(x) \text{ increases in } \left[\frac{1}{2}, \infty \right).
\]
12. Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined as \(f(x) = 2x - 1 \) and
\[g : \mathbb{R} - \{1\} \rightarrow \mathbb{R} \text{ be defined as } g(x) = \frac{x - 1}{2x - 1}. \]

Then the composition function \(f(g(x)) \) is:
- (1) onto but not one-one
- (2) both one-one and onto
- (3) one-one but not onto
- (4) neither one-one nor onto

Official Ans. by NTA (3)

Sol.
\[f(g(x)) = 2g(x) - 1 = 2 \left(\frac{2x - 1}{2(x - 1)} \right) - 1 \]
\[= \frac{x}{x - 1} = 1 + \frac{1}{x - 1} \]

Range of \(f(g(x)) = \mathbb{R} - \{1\} \)

Range of \(f(g(x)) \) is not onto & \(f(g(x)) \) is one-one

So \(f(g(x)) \) is one-one but not onto.

13. An ordinary dice is rolled for a certain number of times. If the probability of getting an odd number 2 times is equal to the probability of getting an even number 3 times, then the probability of getting an odd number for odd number of times is:

- (1) \(\frac{1}{32} \)
- (2) \(\frac{5}{16} \)
- (3) \(\frac{3}{16} \)
- (4) \(\frac{1}{2} \)

Official Ans. by NTA (4)

Sol.
\[^nC_2 \left(\frac{1}{2} \right)^n = ^nC_3 \left(\frac{1}{2} \right)^n \Rightarrow ^nC_2 = ^nC_3 \]
\[\Rightarrow n = 5 \]

Probability of getting an odd number for odd number of times is
\[^5C_1 \left(\frac{1}{2} \right)^5 + ^5C_3 \left(\frac{1}{2} \right)^3 + ^5C_5 \left(\frac{1}{2} \right)^5 = \frac{1}{2} (5 + 10 + 1) = \frac{1}{2} \]

14. A scientific committee is to be formed from 6 Indians and 8 foreigners, which includes at least 2 Indians and double the number of foreigners as Indians. Then the number of ways, the committee can be formed, is:

- (1) 1625
- (2) 575
- (3) 560
- (4) 1050

Official Ans. by NTA (1)

Sol.

<table>
<thead>
<tr>
<th>Indians</th>
<th>Foreigners</th>
<th>Number of ways</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>(^6C_2 \times ^8C_4 = 1050)</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>(^6C_3 \times ^8C_6 = 560)</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>(^6C_4 \times ^8C_8 = 15)</td>
</tr>
</tbody>
</table>

Total number of ways = 1625

15. The area (in sq. units) of the part of the circle \(x^2 + y^2 = 36 \), which is outside the parabola \(y^2 = 9x \), is:

- (1) \(24\pi + 3\sqrt{3} \)
- (2) \(12\pi - 3\sqrt{3} \)
- (3) \(24\pi - 3\sqrt{3} \)
- (4) \(12\pi + 3\sqrt{3} \)

Official Ans. by NTA (3)

Sol.
\[\text{Required area} = \pi \times (6)^2 - 2\int_0^{\frac{\sqrt{9}}{2}} 9x \, dx - \int_\frac{\sqrt{36}}{3}^{\frac{6\sqrt{9}}{6}} \sqrt{36 - x^2} \, dx \]
\[= 36\pi - 12\sqrt{3} - 2 \left(\frac{x}{2} \sqrt{36 - x^2} + 18 \sin^{-1} \frac{x}{6} \right)^6 \]
\[= 36\pi - 12\sqrt{3} - 2 \left(9\pi - 3\pi - \frac{9\sqrt{3}}{2} \right) \]
\[= 24\pi - 3\sqrt{3} \]

16. Let \(p \) and \(q \) be two positive numbers such that \(p + q = 2 \) and \(p^4 + q^4 = 272 \). Then \(p \) and \(q \) are roots of the equation:

- (1) \(x^2 - 2x + 2 = 0 \)
- (2) \(x^2 - 2x + 8 = 0 \)
- (3) \(x^2 - 2x + 136 = 0 \)
- (4) \(x^2 - 2x + 16 = 0 \)

Official Ans. by NTA (4)
Sol. Consider \((p^2 + q^2)^2 - 2p^2q^2 = 272\)
\((p + q)^2 - 2pq \cdot 2p^2q^2 = 272\)
\((pq)^2 - 8pq - 128 = 0\)

\((pq)^2 - 8pq - 128 = 0\)

\(pq = \frac{8 \pm 24}{2} = 16, -8\)

\(\therefore \ pq = 16\)

\(\therefore \) Required equation : \(x^2 - (2)x + 16 = 0\)

17. Two vertical poles are 150 m apart and the height of one is three times that of the other.
If from the middle point of the line joining their feet, an observer finds the angles of elevation of their tops to be complementary, then the height of the shorter pole (in meters) is :

(1) \(20\sqrt{3}\)
(2) \(25\sqrt{3}\)
(3) \(30\)
(4) \(25\)

Official Ans. by NTA (2)

Sol.

\[\tan \theta = \frac{h}{75} = \frac{75}{3h} \]

\(\Rightarrow \ h^2 = \frac{(75)^2}{3} \)

\(h = 25\sqrt{3} \text{ m} \)

\[\int_0^\pi \left(\sin \sqrt{t}\right) \, dt \]

is equal to :

(1) \(\frac{2}{3}\)
(2) \(\frac{3}{2}\)
(3) \(0\)
(4) \(\frac{1}{15}\)

Official Ans. by NTA (1)

\[\lim_\limits{x \to 0} \frac{\int_0^x \sin \sqrt{t} \, dt}{x^3} = \left(\lim_\limits{x \to 0} \frac{\sin x}{x}\right) \frac{2}{3} \]

\(= \lim_\limits{x \to 0} \left(\frac{\sin x}{x}\right) \times \frac{2}{3} = \frac{2}{3} \)

19. If \(e^{(\cos^2 \theta + \cos^4 \theta + \cos^6 \theta + \ldots \infty) \log_2 2}\) satisfies the equation \(t^2 - 9t + 8 = 0\), then the value of

\[\frac{2 \sin x}{\sin x + \sqrt{3} \cos x} \left(0 < x < \frac{\pi}{2}\right) \]

(1) \(2\sqrt{3}\)
(2) \(\frac{3}{2}\)
(3) \(\frac{1}{2}\)

Official Ans. by NTA (4)

Sol.

\[e^{(\cos^2 \theta + \cos^4 \theta + \ldots \infty) \log_2 2} = 2^{2\cos^2 \theta + \cos^4 \theta + \ldots \infty} \]

Now \(t^2 - 9t + 8 = 0 \Rightarrow t = 1, 8\)

\(\Rightarrow 2^\cot^2 \theta = 1, 8 \Rightarrow \cot^2 \theta = 0, 3\)

\(0 < \theta < \frac{\pi}{2} \Rightarrow \cot \theta = \sqrt{3}\)

\[\frac{2 \sin \theta}{\sin \theta + \sqrt{3} \sin \theta} = \frac{2}{1 + \sqrt{3} \cot \theta} = \frac{2}{4} = \frac{1}{2} \]

20. The locus of the mid-point of the line segment joining the focus of the parabola \(y^2 = 4ax\) to a moving point of the parabola, is another parabola whose directrix is :

(1) \(x = -\frac{a}{2}\)
(2) \(x = \frac{a}{2}\)
(3) \(x = 0\)
(4) \(x = a\)

Official Ans. by NTA (3)

Sol.

\[y = \frac{at^2 + a}{2}, \quad k = \frac{2at + 0}{2} \]

\(\Rightarrow t^2 = \frac{2h - a}{a}\) and \(t = \frac{k}{a}\)

\(\Rightarrow \frac{k^2}{a^2} = \frac{2h - a}{a}\)

\(\Rightarrow \) Locus of \((h, k)\) is \(y^2 = a(2x - a)\)

\[y^2 = 2a \left(x - \frac{a}{2} \right) \]

Its directrix is \(x = \frac{a}{2} = \frac{a}{2} \Rightarrow x = 0\)
SECTION-B

1. If the least and the largest real values of \(\alpha \), for which the equation \(z + \alpha |z - 1| + 2i = 0 \) (\(z \in \mathbb{C} \) and \(i = \sqrt{-1} \)) has a solution, are \(p \) and \(q \) respectively; then \(4(p^2 + q^2) \) is equal to _____.

Official Ans. by NTA (10)

Sol.

Put \(z = x + iy \)

\[
RHS = x + \alpha \sqrt{(x-1)^2 + y^2} + iy = 0 + 0i
\]

\[
x + \alpha \sqrt{(x-1)^2 + y^2} = 0 \quad and \quad y = 2 \quad \text{and} \quad \alpha^2 = \frac{x^2}{x^2 - 2x + 5}
\]

Now \(\frac{x^2}{x^2 - 2x + 5} \in \left[0, \frac{5}{4} \right] \)

\[\therefore \alpha^2 \in \left[0, \frac{5}{4} \right] \implies \alpha \in \left[-\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2} \right] \]

\[\therefore p = -\frac{\sqrt{5}}{2}; q = \frac{\sqrt{5}}{2} \]

\[\implies 4(p^2 + q^2) = 4\left(\frac{5}{4} + \frac{5}{4}\right) = 10 \]

2. If \(\int_2^a (|x| + 1 + x^2) \, dx = 22 \), \(a > 2 \) and \([x]\) denotes the greatest integer \(\leq x \), then \(\int_a^2 (x + [x]) \, dx \) is equal to _____.

Official Ans. by NTA (3)

Sol.

\[
\int_0 a (-2x + 2) \, dx + \int_0^\frac{a}{2} (x + 2 - x) \, dx + \int_\frac{a}{2}^a (2x - 2) \, dx = 22
\]

\[
x^2 - 2x|_0^a + 2x|^\frac{a}{2}_0 + x^2 - 2x|_0^\frac{a}{2} = 22
\]

\[a^2 + 2a + 4 + a^2 - 2a - (4 - 4) = 22 \]

\[2a^2 = 18 \implies a = 3 \]

\[\int_3^\infty (x + [x]) \, dx = -(3 - 2 - 1 + 1 + 2) = 3 \]

3. Let \(A = \{ n \in \mathbb{N} : n \text{ is a 3-digit number} \} \)

\[B = \{ 9k + 2 : k \in \mathbb{N} \}\]

and \(C = \{ 9k + l : k \in \mathbb{N} \} \) for some \(l (0 < l < 9) \)

If the sum of all the elements of the set \(A \cap (B \cup C) \) is 274 \times 400, then \(l \) is equal to _______.

Official Ans. by NTA (5)

Sol.

\[B \text{ and } C \text{ will contain three digit numbers of the form } 9k + 2 \text{ and } 9k + l \text{ respectively. We need to find sum of all elements in the set } B \cup C \text{ effectively.} \]

Now, \(S(B \cup C) = S(B) + S(C) - S(B \cap C) \)

where \(S(k) \) denotes sum of elements of set \(k \).

Also, \(B = \{101, 109, \ldots, 992\} \)

\[\therefore S(B) = 100 \times (101 + 992) = 54650 \]

Case-I : If \(l = 2 \)

then \(B \cap C = B \)

\[\therefore S(B \cup C) = S(B) \]

which is not possible as given sum is \(274 \times 400 = 109600 \).

Case-II : If \(l \neq 2 \)

then \(B \cap C = \phi \)

\[\therefore S(B \cup C) = S(B) + S(C) = 400 \times 274 \]

\[\implies 54650 + \sum_{k=11}^{110} 9k + l = 109600 \]

\[\implies 9 \sum_{k=11}^{110} k + \sum_{k=11}^{110} l = 54950 \]

\[\implies 9 \left(\frac{100}{2} \right) (11 + 110) + l(100) = 54950 \]

\[\implies 54450 + 100l = 54950 \]

\[\implies l = 5 \]

4. Let \(M \) be any \(3 \times 3 \) matrix with entries from the set \(\{0, 1, 2\} \). The maximum number of such matrices, for which the sum of diagonal elements of \(M^T M \) is seven, is _______.

Official Ans. by NTA (540)
7. \[
\frac{a^2 + b^2 + c^2 + d^2 + e^2 + f^2 + g^2 + h^2 + i^2}{2} = 7
\]

Case-I : Seven (1's) and two (0's)

\[9C_2 = 36\]

Case-II : One (2) and three (1's) and five (0's)

\[\frac{9!}{5!3!} = 504\]

\[\therefore \text{Total} = 540\]

5. If one of the diameters of the circle \(x^2 + y^2 - 2x - 6y + 6 = 0\) is a chord of another circle 'C', whose center is at (2, 1), then its radius is ______.

Official Ans. by NTA (3)

Sol.

![Diagram](image)

\(x^2 + y^2 + 2x - 6y + 6 = 0\)

center (1, 3)

radius = 2

distance between (1, 3) and (2, 1) is \(\sqrt{5}\)

\[\therefore (\sqrt{5})^2 + (2)^2 = r^2\]

\[\Rightarrow r = 3\]

6. The minimum value of \(\alpha\) for which the equation \(\frac{4}{\sin x} + \frac{1}{1 - \sin x} = \alpha\) has at least one solution in \(\left(0, \frac{\pi}{2}\right)\) is ______.

Official Ans. by NTA (9)

Sol.

Let \(f(x) = \frac{4}{\sin x} + \frac{1}{1 - \sin x}\)

\[\Rightarrow f(x) = 0 \Rightarrow \sin x = 2/3\]

\[\therefore f(x)_{\text{min}} = \frac{4}{2/3} + \frac{1}{1 - 2/3} = 9\]

\(f(x)_{\text{max}} \rightarrow \infty\)

\(f(x)\) is continuous function

\[\therefore \alpha_{\text{min}} = 9\]

7. \[\lim_{n \to \infty} \left\{ \sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{1+r+r^2} \right) \right\}\]

is equal to ____.

Official Ans. by NTA (1)

Sol.

\[\lim_{n \to \infty} \left\{ \sum_{r=1}^{n} \tan^{-1} \left(\frac{1}{1+r+r^2} \right) \right\}\]

\[= \lim_{n \to \infty} \left\{ \sum_{r=1}^{n} \tan^{-1} \left(\frac{r+1-r}{1+r(r+1)} \right) \right\}\]

\[= \tan \left[\lim_{n \to \infty} \sum_{r=1}^{n} \left[\tan^{-1}(r+1) - \tan^{-1}(r) \right] \right]\]

\[= \tan \left(\lim_{n \to \infty} \left[\tan^{-1}(n+1) - \frac{\pi}{4} \right] \right)\]

\[= \tan \left(\frac{\pi}{4} \right) = 1\]

8. Let three vectors \(\vec{a}, \vec{b}\) and \(\vec{c}\) be such that \(\vec{c}\) is coplanar with \(\vec{a}\) and \(\vec{b}\), \(\vec{a} \cdot \vec{c} = 7\) and \(\vec{b}\) is perpendicular to \(\vec{c}\), where \(\vec{a} = -\hat{i} + \hat{j} + \hat{k}\) and \(\vec{b} = 2\hat{i} + \hat{k}\), then the value of \(2|\vec{a} + \vec{b} + \vec{c}|^2\)

is ______.

Official Ans. by NTA (75)
10. Let \(\mathbf{P} = \begin{bmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{bmatrix} \), where \(\alpha \in \mathbb{R} \). Suppose \(\mathbf{Q} = [q_{ij}] \) is a matrix satisfying \(\mathbf{PQ} = k\mathbf{I}_3 \) for some non-zero \(k \in \mathbb{R} \). If \(q_{23} = -\frac{k}{8} \) and \(|\mathbf{Q}| = \frac{k^2}{2} \), then \(\alpha^2 + k^2 \) is equal to _______.

Official Ans. by NTA (17)

Sol.

\(\mathbf{PQ} = k\mathbf{I}_3 \) \\
\(|\mathbf{P}| |\mathbf{Q}| = k^3 \) \\
\(|\mathbf{P}| = 2k \neq 0 \Rightarrow \mathbf{P} \) is an invertible matrix \\
\(\mathbf{Q} = k\mathbf{P}^{-1}\mathbf{I} \) \\
\(\mathbf{Q} = \frac{\text{adj} \mathbf{P}}{2} \) \\
\(q_{23} = -\frac{k}{8} \) \\
\(-\frac{3\alpha + 4}{2} = -\frac{k}{8} \Rightarrow k = 4 \) \\
\(|\mathbf{P}| = 2k \Rightarrow k = 10 + 6\alpha \ldots (i) \) \\
Put value of \(k \) in (i). we get \(\alpha = -1 \)