1. Find the force of mass 500 gm if velocity of given mass is related as given
\[v = 10 \sqrt{t} \]
\[
(1) \frac{3}{2} \text{ N} \\
(2) \frac{2}{3} \text{ N} \\
(3) \frac{3}{2} \text{ N} \\
(4) \frac{2}{3} \text{ N}
\]
Ans. (3)
Sol.
\[
\frac{dv}{dt} = 10 \sqrt{t} \\
\frac{a}{v} = \frac{10}{2 \sqrt{t}} = \frac{5}{\sqrt{t}}
\]
\[
\therefore \ F = ma = \frac{5}{\sqrt{t}} \times 0.5 = \frac{5}{2} \text{ Newton}
\]

2. A stone is projected with projection speed 40 m/s and projection angle 30° on horizontal surface. Find the velocity of stone after time \(t = 2 \) sec of projection.
\[
(1) [40 \sqrt{5} - 10] \text{ m/s} \\
(2) [20 \sqrt{5} - 10] \text{ m/s} \\
(3) [20 \sqrt{7} - 10] \text{ m/s} \\
(4) 20 \sqrt{3} \text{ m/s}
\]
Ans. (4)
Sol.
\[
\frac{dy}{dt} = 40 \cos 30° = 20 \sqrt{3} \text{ m/s}
\]
After time \(t = 2 \) sec
\[
v_x = u_x = 20 \sqrt{3} \text{ m/s}
\]
\[
v_y = u_y + gt = 20 + (-10) \times 2 = 0
\]
\[
v = v_x + v_y = 20 \sqrt{3} \text{ m/s}
\]

3. Electric potential on conducting spherical shell's surface is 'V'. What is the value of electric potential at the centre of this spherical shell?
\[
(1) \frac{3}{2} V \\
(2) V \\
(3) \frac{V}{2} \\
(4) 2V
\]
Ans. (2)
Sol. Potential inside uniform charge shell is constant because there is no electric field inside the shell.
4. Two cars A and B are running on the same road and in same direction. Car A is blowing here with frequency $f_a = 500$ Hz. Find the frequency experienced by the driver of car B (approximately). (Consider the speed of sound in air = 320 m/s).

```
\[
\begin{align*}
(1) & \quad 260 \text{ Hz} \\
(2) & \quad 200 \text{ Hz} \\
(3) & \quad 270 \text{ Hz} \\
(4) & \quad 300 \text{ Hz}
\end{align*}
\]
```

Ans. (2)

Sol.
\[
\begin{align*}
\frac{f_b}{f_a} &= \frac{V - V_o}{V}\\
&= \frac{300 - 320}{300}\\
&= 0.333
\end{align*}
\]

\[= \frac{200}{320} = 0.625 \text{ Hz.}
\]

5. \[\text{Physics question}
\]

Find power of lens F at time $t = 10$ s. Initial velocity of the ball is zero.

```
\[
\begin{align*}
(1) & \quad 50 \text{ W} \\
(2) & \quad 45 \text{ W} \\
(3) & \quad 100 \text{ W} \\
(4) & \quad 50\sqrt{3} \text{ W}
\end{align*}
\]
```

Ans. (1)

Sol.
\[
F = \frac{m}{V^2} = \frac{5}{100} = 0.05 \text{ N}
\]

\[
V = a + at = 0 + 1 \times 10 = 10 \text{ m/s}
\]

\[
\text{5e power} P = F \times V = 10 \times 10 = 50 \text{ W}
\]

6. Find ratio of Ct’s Bragg’s wavelength of photon & electron kinetic energy of both the particles is same.

```
\[
\begin{align*}
(1) & \quad 1:43 \\
(2) & \quad 1:1 \\
(3) & \quad 2:45 \\
(4) & \quad 1:20
\end{align*}
\]
```

Ans. (1)

Sol.
\[
\frac{h}{\nu} = \frac{h}{\nu} = \frac{\lambda}{\lambda}
\]

\[
\Rightarrow \frac{\lambda}{\lambda} = \frac{1}{43}
\]

7. A capacitor is charged to voltage V. Its positive plate is enclosed by a closed surface. Find flux passing through the closed surface capacitance of the capacitor is C.

```
\[
\begin{align*}
(1) & \quad CV \\
(2) & \quad CV \\
(3) & \quad RV/C \\
(4) & \quad CV
\end{align*}
\]
```

Ans. (1)

Sol. Change on capacitor $\phi = CV$

charge on positive plate will be $\phi = -CV$

so flux passing through the closed surface is $\phi = \frac{CV}{\epsilon_0}$

8. Find energy for He$^{++}$ in first excited state.

```
\[
\begin{align*}
(1) & \quad 13.6 \text{ eV} \\
(2) & \quad 27.2 \text{ eV} \\
(3) & \quad 3.4 \text{ eV} \\
(4) & \quad 1.51 \text{ eV}
\end{align*}
\]
```

Ans. (1)

Sol.
$E = \frac{Z^2}{r^2} \text{eV} = \frac{5^2}{2^2} \times 13.6 \text{ eV} = 13.6 \text{ eV}$

9. A wave is propagating in stretched string. Find the frequency of this propagating wave if density of string material = ρ. Young’s modulus = E. Extension in string = L. Natural length of string = L. Wavelength of wave $= \lambda$.

```
\[
\begin{align*}
(1) & \quad \frac{\sqrt{\omega L}}{\sqrt{\rho}} \\
(2) & \quad \frac{\sqrt{E L}}{\sqrt{\rho}} \\
(3) & \quad \frac{\sqrt{E L}}{\sqrt{\rho}} \\
(4) & \quad \frac{\sqrt{E L}}{\sqrt{\rho}}
\end{align*}
\]
```

Ans. (4)

Sol.
$F = \frac{\sqrt{E L}}{\sqrt{\rho}}$
10. If \(A = 2 \hat{j} + 2 \hat{k} \) and \(B = 3 \hat{i} - \hat{j} + 2 \hat{k} \), find magnitude of \(B \).

\[|B| = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \]

Ans. (2)

11. A body rotating with kinetic energy \(E \). If angular velocity of body is increased by three times of initial angular velocity, then kinetic energy becomes \(9E \). Find the value of \(\omega \).

\[E = \frac{1}{2} I \omega^2 \]

\[9E = \frac{1}{2} I (3\omega)^2 \]

\[9 = 9 \]

Ans. (2)

12. If force \(F \), velocity \(V \) and time \(T \) are taken as fundamental quantities then find dimensions of density.

\[[V/F/T^2] = [F/T^2] = [V/T^2] = [F/V/T] \]

Ans. (4)

13. Eight identical drops each has velocity 6 m/s in same direction combine to form a bigger drop find velocity of the bigger drop.

(1) 15 m/s
(2) 20 m/s
(3) 5 m/s
(4) 4 m/s

Ans. (3)

14. An electromagnetic wave is propagating along positive x-axis. Amplitude of electric field is 6 \(\times 10^{-3} \) V/m. Find amplitude of magnetic field.

\[\text{Ans. (2)} \]

\[B = \frac{E}{c} \]

\[B = \frac{6 \times 10^{-3}}{3 \times 10^8} = 2.2 \times 10^{-11} T \]