PAPER-1 (B.E./B. TECH.)

JEE (Main) 2020

COMPUTER BASED TEST (CBT)

Memory Based Questions & Solutions

Date: 03 September, 2020 (SHIFT-2) | TIME: (03.00 p.m. to 06.00 p.m)

Duration: 3 Hours | Max. Marks: 300

SUBJECT: MATHEMATICS

Resonance Eduventures Ltd.

Reg. Office & Corp. Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-744-2777777, 2777790 | FAX No.: +91-029-33827222

To Know more : write RESCO at S6077J | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CNIC: 198400075000070507070799

Toll Free: 1800 250 5555 | 7340013333 | santoor.com/resonance | sANTOR.com/resonance | www.youtube.com/resonance

This solution was downloaded from Resonance JEE (Main) 2020 Solution portal.
1. \[\int_0^1 \frac{x^2}{(1-x^2)^{3/2}} \, dx = \frac{k}{6} \text{, then } k = \]

 (1) \(3\sqrt{2} + \pi \)
 (2) \(2\sqrt{3} - \pi \)
 (3) \(2\sqrt{2} + \pi \)
 (4) \(3\sqrt{2} - \pi \)

Ans. (2)

Sol.

\[k = \int_0^1 \frac{x^2}{(1-x^2)^{3/2}} \, dx \]

\[x = \sin \theta \; ; \; dx = \cos \theta \, d\theta \]

\[\Rightarrow k = \frac{\int_{0}^{\pi/2} \frac{\sin^2 \theta}{(1-\sin^2 \theta)^{3/2}} \cos \theta \, d\theta}{6} \Rightarrow k = \frac{\int_{0}^{\pi/2} \sin^2 \theta \cos^2 \theta \, d\theta}{6} \]

\[\Rightarrow k = \frac{1}{6} \left(\frac{\int_{0}^{\pi/2} \sin^2 \theta \, d\theta}{2} \right) \Rightarrow k = \frac{1}{6} \left(\frac{\pi}{2} - \frac{\pi}{3} \right) \Rightarrow k = \frac{\pi}{12} \]

\[\Rightarrow k = \frac{\pi}{12} = \frac{2\sqrt{3} - \pi}{6} \]

2. Let \(\frac{x^2}{25} + \frac{y^2}{16} = 1 \) and \(\frac{x^2}{25} - \frac{y^2}{16} = 1 \) are ellipse and hyperbola respectively such that \(e_1, e_2 = 1 \) where \(e_1, e_2 \) are eccentricities. If distance between foci of ellipse is \(\alpha \) and that of hyperbola is \(\beta \) then \((\alpha, \beta) = \)

 (1) \((4, 5) \)
 (2) \((8, 10) \)
 (3) \((10, 7) \)
 (4) \((4, 10) \)

Ans. (2)

Sol.

\[e_1 = \sqrt{1 - \frac{b^2}{25}} ; \quad e_2 = \sqrt{1 + \frac{b^2}{16}} \]

\(e_1 \cdot e_2 = 1 \)
\[\Rightarrow \left(\frac{a}{b} \right)^2 = 1 \Rightarrow \left(\frac{b^2}{16} + \frac{b^2}{16} - 1 \right) = 1 \Rightarrow \frac{2b^2}{16} - 1 = 1 \Rightarrow b^2 = 9 \]
\[\Rightarrow e_1 = \sqrt{1 - \frac{9}{25}} = \frac{4}{5} \]
\[\Rightarrow e_2 = \sqrt{1 - \frac{9}{16}} = \frac{5}{4} \]
\[\alpha = 2(5\sqrt{4}) = 8 \]
\[\beta = 2(4\sqrt{4}) = 10 \]
\[(\alpha, \beta) = (8, 10) \]

3. Two equal circles of radius \(2\sqrt{5} \) passes through the entries LR of \(y^2 = 4x \) then find the dist. between centres of circles

(1) 4
(2) 8
(3) 2
(4) 6
Ans. (2)

Resonance Eduventures Ltd.

Reg. Office & Corporate Office: CG Tower, A-46 & 52, IPIA, Near City Mall, Jaipur Road, Kota (Raj.) - 324005
Ph. No.: +91-7467777777, 7777700 | FAX No.: +91-022-39167222
To Know more: sms RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U8050228007PLC024629
Toll Free: 1800 258 5555 3 734010933

This solution was downloaded from Resonance JEE (MAIN) 2020 Solution portal PAGE # 1

Sol.

\[y = \sqrt{x} \]
\[C_2 = 2C_1 \]
\[S = 2\sqrt{20} - 4 = 8 \]

4. If \(f(x) = \int \frac{\sqrt{x}}{\sqrt{1+x}} \) dx = \(A\sqrt{x} + B\sqrt{x} + C \) then \(A(x) \) and \(B(x) \) will be

(1) 1 + x, \(\sqrt{x} \)
(2) 1 - x, -\(\sqrt{x} \)
(3) 1 + x, -\(\sqrt{x} \)
(4) 1 - x, \(\sqrt{x} \)
Ans. (3)

Sol. \(f(x) = \int \frac{\sqrt{x}}{\sqrt{1+x}} \) dx

\[f(x) = \int \frac{\sqrt{x}}{\sqrt{1+x}} \sqrt{x} = x \sqrt{1} - \frac{1}{2} \sqrt{1} \times \frac{1}{2} x + C \]
\[= x \tan^{-1} \sqrt{x} - \frac{1}{2} \sqrt{1} \times \frac{1}{2} x + C \]
\[= x \tan^{-1} \sqrt{x} - \frac{1}{2} \sqrt{1} \times \frac{1}{2} x + C \]
\[= x + 1 \tan^{-1} \sqrt{x} + C \]
\[\Rightarrow (A(x)) + B(x) = \sqrt{x} \]

5. The coefficient of term independent of \(x \) in the expansion of \(\left(\frac{3x^2}{2} - \frac{1}{3x} \right)^9 \) is \(\lambda \), then \(18\lambda \), is

(1) 9
(2) 7
(3) 6
(4) 4
Ans. (2)

Sol. \(T_{r+1} = \binom{9}{r} \left(\frac{3x^2}{2} \right)^{9-r} \left(-\frac{1}{3x} \right)^r \]

For the term independent of \(x \) put \(r = 6 \)

\[\Rightarrow T_7 = \binom{9}{6} \left(\frac{3}{2} \right)^3 \left(-\frac{1}{3} \right)^6 \]
\[C_0 \binom{9}{6} = \frac{9 	imes 8 	imes 7}{3 	imes 2 	imes 1} \binom{1}{6} = \frac{7}{18} \]

6. If \(|z_1 - 1| = \text{Re}(z_1) \), \(|z_2 - 1| = \text{Re}(z_2) \) and \(\arg(z_1 + z_2) = \frac{\pi}{3} \), then \(\text{Im}(z_1 + z_2) = \)

(1) \(\frac{1}{\sqrt{3}} \)
(2) \(\frac{2}{\sqrt{3}} \)
(3) \(\frac{3}{\sqrt{3}} \)
(4) \(\sqrt{3} \)

Ans. (4)
Sol.

\[|z| - 1 = \text{Re}(z) \]
Let \(z = x + iy \) and \(z = x + iy \)

\[(x - 1)^2 + y^2 = x^2 \]
\[y^2 - 2x + 1 = 0 \]
\[|x| - 1 = \text{Re}(z) \]
\[x^2 - 1 + y^2 = x^2 \]
\[y^2 - 2x + 1 = 0 \]
\[\frac{y^2 - 2x + 1}{2} = 0 \]
\(y^2 - 2x + 1 = 0 \)
\(y^2 - 2(x - x_0) = 0 \)
\((y_1 - y_2)(y_1 + y_2) = 2(x_1 - x_2) \)
\(y_1 + y_2 = 2 \frac{x_1 - x_2}{y_1 - y_2} \)
\(\gamma \)
\(\tan^{-1} \frac{y_1 - y_2}{x_1 - x_2} = \frac{\pi}{3} \)
\(\frac{y_1 - y_2}{x_1 - x_2} = \frac{\pi}{3} \)
\(\frac{x_1 - x_2}{x_1 - x_2} = \sqrt{3} \)
\(\frac{x_1 - x_2}{x_1 - x_2} = \frac{2}{\sqrt{3}} \)
\(\implies \text{Im}(z) = \text{Im}(z) = \frac{2}{\sqrt{3}} \)

7. The probability of 5 digit numbers that are made up of exactly two distinct digits is

\[\begin{align*}
(1) & \quad \frac{135}{10^7} \\
(2) & \quad \frac{125}{10^7} \\
(3) & \quad \frac{144}{10^7} \\
(4) & \quad \frac{127}{10^7}
\end{align*} \]

Ans. (3)

Sol.
\text{total} = 9(10^4)
\text{fav. way} = C_2^2 (2^5 - 2) + 3 C_1 (2^4 - 1) = 36(30) + 9(15) = 1080 + 135

\[\text{Prob} = \frac{36 \times 30 + 9 \times 15}{9 \times 10^4} = \frac{4 \times 30 + 15}{10^4} \]

8. Let \((\lambda^2 + 1)x^2 - 4x + 2 = 0 \) be a quadratic equation then set of values of \(\lambda \) if exactly one root of quadratic equation lies in \((0, 1)\) is

\[\begin{align*}
(1) & \quad (2, 3) \\
(2) & \quad (1, 3) \\
(3) & \quad (1, 2) \\
(4) & \quad (1, 3)
\end{align*} \]

Ans. (4)

Sol.
\(f(0) f(1) \leq 0 \)
\(\Rightarrow 2(\lambda^2 + 1 - 4\lambda + 2) \leq 0 \)
\(\Rightarrow 2(\lambda^2 - 4\lambda + 3) \leq 0 \)
\(\lambda \in [1, 3] \)
\(\text{But at } \lambda = 1, \text{ both roots are 1 so } \lambda \neq 1 \)

9. The orthocentre of \(\triangle ABC \) where vertices are \(A(-1, 7) \), \(B(-7, 1) \), \(C(5, -5) \) is

\[\begin{align*}
(1) & \quad (-3, 3) \\
(2) & \quad (3, -3) \\
(3) & \quad (3, 3) \\
(4) & \quad (-3, -3)
\end{align*} \]

Ans. (1)
Sol.

\[m_{BC} = \frac{6}{12} = \frac{1}{2} \]

\[\therefore \text{Equation of AD is} \ y = -2(x + 1) \]
\[y = 2x + 9 \quad \ldots (1) \]

\[m_{DE} = \frac{1}{-6} = \frac{1}{2} \quad \ldots (2) \]

\[\therefore \text{Equation of BE is} \]
\[y - 1 = \frac{1}{2}(x + 7) \]

by (1) and (2)
\[2x + 9 + \frac{1}{2}x + \frac{9}{2} = 0 \]
\[\Rightarrow 4x + 18 = x + 9 \]
\[\Rightarrow 3x = 9 \Rightarrow x = 3 \]
\[\therefore y = 3 \]

10. \(m, A, M, \) and \(3 \text{ GM are inserted between 3 and 243} \) such \(2^{nd} \text{ GM = 4}^{th} \text{ AM then} m = \)

Ans. 39

Sol.

\[A_1, A_2, A_3, \ldots \ldots , A_n, 243 \]
\[d = \frac{243 - 3}{n - 1} = \frac{240}{n - 1} \]
\[3, G_1, G_2, G_3, 243 \]
\[r = \frac{243}{3^{1-1}} = (31)^{1/3} = 3 \]
\[G_2 = A_4 \]
\[\Rightarrow 3(3)^2 = 3 + 4 \times \frac{240}{m+1} \]
\[\Rightarrow 27 = 3 + \frac{960}{m+1} = m + 1 = 40 \]
\[m = 39 \]

11. A normal is drawn to parabola \(y^2 = 4x\) at \((1,2)\) and tangent is drawn to \(y = e^x\) at \((c, e^c)\). If tangent and normal intersect at \(x - \) axis then find \(C\).

Ans. 04.00

Resonance Eduventures Ltd.
Reg. Office & Corp. Office : G-6 Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Ph. No.: +91-744-2777777, 2777770 | FAX No.: +91-022-39167222
To Know more : CLICK HERE | Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in | CIN : U80302230079I0234029
Toll Free : 1800 258 5555 | 5340013333
This solution was downloaded from Resonance JEE (MAIN) 2020 Solution portal

Sol.

For \((1,2)\) of \(y^2 = 4x \Rightarrow t = 1, a = 1\)

normal \(\Rightarrow bx + y = 2at + at^3\)
\(\Rightarrow x + y = 3 \) intersect \(x-\) axis at \((3,0)\)

\(y = e^x \Rightarrow \frac{dy}{dx} = e^x\)

\(\text{tangent} \Rightarrow y = \phi (x-c) \)
\(\text{at} (3,0) \Rightarrow 0 = \phi (3-c) \Rightarrow c = 4 \)

12. If relation \(R_1 = \{(a, b) : a, b \in R, a^2 + b^2 \in Q\} \)
and \(R_2 = \{(a, b) : a, b \in R, a^2 + b^2 \in Q\} \)

Then

(1) \(R_1\) is transitive, \(R_1\) is not transitive
(2) \(R_1\) is not transitive, \(R_1\) is not transitive
(3) \(R_1\) is transitive, \(R_1\) is transitive
(4) \(R_1\) is not transitive, \(R_2\) is transitive

Sol.

For \(R_1\):

Let \(a = 1 + \sqrt{2}, b = 1 - \sqrt{2}, c = 8^{1\text{/}4}\)

- \(aRb \iff a^2 + b^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 6 \in Q\)
- \(aRc \iff b^2 + c^2 = (1 - \sqrt{2})^2 + (8^{1\text{/}4})^2 = 3 \in Q\)
- \(aRc \iff a^2 + c^2 = (1 + \sqrt{2})^2 + (8^{1\text{/}4})^2 = 3 + 4\sqrt{2} \notin Q\)

\[\therefore \quad R_1 \text{ is not transitive.}\]

For \(R_2\):

Let \(a = 1 + \sqrt{2}, b = \sqrt{2}, c = 1 - \sqrt{2}\)

- \(aRb \iff a^2 + b^2 = (1 + \sqrt{2})^2 + (\sqrt{2})^2 = 5 + 2\sqrt{2} \in Q\)
- \(bRb \iff b^2 + c^2 = (\sqrt{2})^2 + (1 - \sqrt{2})^2 = 6 - 2\sqrt{2} \in Q\)
- \(aRc \iff a^2 + c^2 = (1 + \sqrt{2})^2 + (1 - \sqrt{2})^2 = 6 \in Q\)

\[\therefore \quad R_2 \text{ is not transitive.}\]

13. If the sum of first \(n\) terms of series \(20 + 19\frac{3}{5} + 19\frac{1}{5} + 18\frac{4}{5} \ldots\) is 488 and \(n\)th term is negative then find \(n\).

\[
\begin{align*}
\text{Anns.} & \quad (1) \quad 4 \quad 6 \\
\text{Sol.} & \quad 488 = n \left(\frac{100}{5} + (n-1) \left(2 \frac{2}{5} \right) \right) \\
& \quad 488 = \frac{n}{2} (101 - n) \quad \Rightarrow \quad n^2 - 101n + 2440 = 0 \\
& \quad \Rightarrow \quad n = 61 \text{ or } 40
\end{align*}
\]

- For \(n = 40\) \(\Rightarrow T_n > 0\)
- For \(n = 61\) \(\Rightarrow T_n > 0\)

\[
\begin{align*}
T_n = \frac{100}{5} + (61 - 1) \left(-2 \frac{2}{5} \right) &= -4
\end{align*}
\]

Resonance Eduventures Ltd.

Reg. Office & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005

Ph. No.: +91-7444777777, 2777770 | FAX No.: +91-022-39167222

To Know more : SMS RESO at 56677 | Website: www.resonance.ac.in | E-mail: contact@resonance.ac.in | CIN: U803022007PLC034029

This solution was downloaded from Resonance JEE (MAIN) 2020 Solution portal

14. Surface area of a cube is increasing at a rate of 3.6 cm\(^2\)/s. Find the rate at which its volume increases when lengths of side \(a\) is 10 cm.

\[
\begin{align*}
\text{Anns.} & \quad (1) \quad 9 \\
\text{Sol.} & \quad S = 6a^2 \Rightarrow \frac{ds}{dt} = 12a \frac{da}{dt} = 3.6 \Rightarrow 12(10) \frac{da}{dt} = 3.6 \Rightarrow \frac{da}{dt} = 0.03 \\
V = a^3 \Rightarrow \frac{dv}{dt} = 3a^2 \frac{da}{dt} = 3(10)^2 \left(\frac{3}{100} \right) = 9
\end{align*}
\]

15. Which of the following point lies on plane containing lines \(\vec{r} = \hat{i} - \lambda(2\hat{j} + \hat{k})\) and \(\vec{r} = -\hat{j} - \mu(\hat{i} - 2\hat{j} + \hat{k})\)

\[
\begin{align*}
\text{Anns.} & \quad (2) \quad (1, -3, 6) \\
\text{Sol.} & \quad \text{Normal of plane} = \begin{vmatrix} 1 & 1 & 1 \\ -1 & 2 & 1 \end{vmatrix} \\
& \quad \vec{n} = 3\hat{i} - 2\hat{j} - \hat{k} \\
& \quad \text{D.R. of plane} = 3, -2, -1 \\
& \quad \Rightarrow \quad 3(x - 1) - 2(y - 0) - 1(z - 0) = 0 \\
& \quad \Rightarrow \quad 3x - 2y - z - 3 = 0
\end{align*}
\]

\[
\begin{align*}
\text{Sol.} & \quad \left(\frac{a^2 + 2x^2}{3} \right)^{\frac{1}{3}} - \left(3x^2 \right)^{\frac{1}{3}} = \\
& \quad \left(\frac{2x^2}{3} \right)^{\frac{1}{3}} \\
\text{Anns.} & \quad (4) \quad \left(\frac{1}{3} \right)^{\frac{1}{3}} \\
& \quad \frac{1}{2} \left(a^3 + 2x^3 \right) - \frac{3}{2} \left(3x^3 \right)^{\frac{1}{3}} = \frac{1}{3} \left(3x^3 \right)^{\frac{1}{3}} = 6x
\end{align*}
\]
17. If \(x \, dy + y \, dx = 2 \, y \, dx + x^2 \, dy \) and \(y(2) = e \) then \(y(4) = ? \)

\[
\begin{align*}
(1) & \quad \frac{1}{2} \sqrt{e} \\
(2) & \quad \frac{1}{2} \sqrt{e} \\
(3) & \quad \sqrt{e} \\
(4) & \quad \frac{3}{2} \sqrt{e}
\end{align*}
\]

Ans. (4)\)

Sol.

\(x \, dy + y \, dx = 2 \, y \, dx + x^2 \, dy \)

\[
\Rightarrow (x^2 - x^2) \, dy = (2 - x) \, y \, dx
\]

\[
\Rightarrow \int \frac{dy}{y} = \int \frac{2 - x}{x(x - 1)} \, dx
\]

\[
\Rightarrow \ln y = \ln x + 2 + \ln |x - 1| + C
\]

\[
\Rightarrow y(2) = e
\]

\[
\Rightarrow 1 = -\ln 2 + 1 + 0 + C
\]

\[
\Rightarrow C = \ln 2
\]

\[
\Rightarrow \ln y = \ln |x| + 2 + \ln |x - 1| + \ln 2
\]

at \(x = 4 \)

\[
\Rightarrow \ln y(4) = -\ln 4 + \frac{1}{2} + \ln 3 + \ln 2
\]

\[
\Rightarrow \ln y(4) = -\ln \left(\frac{3}{2} \right) + \frac{1}{2} = \ln \left(\frac{3}{2} e^{\frac{1}{2}} \right)
\]

\[
\Rightarrow y(4) = \frac{3}{2} e^{\frac{1}{2}}
\]

18. Find the number of 3 digit numbers if sum of their digits is 10

Ans. 55.00

Sol. Let \(xyz \) be the three digit number

\(x + y + z = 10, \ x \leq 1, \ y \geq 0, \ z \geq 0 \)

\(x - 1 = t \Rightarrow x = 1 + t \quad x - 1 \geq 0 \quad t \geq 0 \)

\(t + y + z = 10 - 1 \)

\(t + y + z = 9, \quad 0 \leq t, z \leq 9 \)

coefficient of \(x^3 \) is \((1 + x + x^2 + \ldots + x^n) \)

\[
= \left(\frac{1 - x^{10}}{1 - x} \right) = (1 - x)^{-3}
\]

coefficient \(x^3 \) is \(3 + 9 - 1 = 11C_3 = 11C_2 = \frac{11 \times 10}{2} = 55 \)
19. \[
\frac{a}{\cos \theta} = \frac{b}{\cos \left(\theta + \frac{2\pi}{3}\right)} = \frac{c}{\cos \left(\theta + \frac{4\pi}{3}\right)}
\]
then find angle between vectors \(a\hat{i} + b\hat{j} + c\hat{k}\) and \(b\hat{i} + c\hat{j} + a\hat{k}\)

If \(\theta = \frac{2\pi}{9}\) and \(a^2 + b^2 + c^2 = 1\), is

\[
\begin{align*}
(1) & \quad \frac{\pi}{3} \\
(2) & \quad \frac{\pi}{6} \\
(3) & \quad \frac{2\pi}{3} \\
(4) & \quad \frac{5\pi}{6}
\end{align*}
\]

Ans. (3)

Sol. \[
\frac{a}{\cos \theta} = \frac{b}{\cos \left(\theta + \frac{2\pi}{3}\right)} = \frac{c}{\cos \left(\theta + \frac{4\pi}{3}\right)} = \frac{a + b + c}{0}
\]

\[a + b + c = 0 \quad \Rightarrow \quad a^2 + b^2 + c^2 + 2(ab + bc + ca) = 0 \quad \Rightarrow \quad ab + bc + ca = -\frac{1}{2}\]

Now let angle between given vectors is \(\phi\)

\[\cos \phi = \frac{(a\hat{i} + b\hat{j} + c\hat{k})(b\hat{i} + c\hat{j} + a\hat{k})}{a^2 + b^2 + c^2}\]

\[\cos \phi = \frac{ab + bc + ca}{1} = -\frac{1}{2}\]

\[\phi = \frac{2\pi}{3}\]

20. \(\text{If } (p \land q) \rightarrow (\neg q \lor r) \text{ has truth value false then the truth values of } p, q, r \text{ respectively are}
\]

\[
(1) \quad T, T, T \\
(2) \quad T, F, T \\
(3) \quad F, F, T \\
(4) \quad T, T, T
\]

Ans. (1)

Sol. \((p \land q)\) should be TRUE and \((\neg q \lor r)\) should be FALSE.
Announcing

Rank Booster Part-2

An Exhaustive Online Preparation Course of 3 Weeks for JEE (Advanced) 2020

Course Features
- New specially designed 18 Advanced Worksheets
- Online Live Discussion class (6 per week) each of 1.5 hours for Advanced worksheets
- Exclusive Unit wise Work Sheets covering tough & important concepts
- Revision DPPs for more practice on daily basis
- Medium of Teaching and Content would be only English
- Gyan Patra booklet: Specially designed package for quick revision of P, G & M

Course Brief
The Rank Booster Part-2 course is recommended for students aiming to rank in JEE (Advanced) 2020. The course structure is tailored to better the chances through rigorous practice of 18 Advanced Worksheets and their exhaustive conceptual discussion. Also, unit wise worksheets for self-practice to strengthen tough and important concepts.

Boosting Aspirations to Reality

- **Course Start:** 07 Sept.
- **Course Duration:** 3 Weeks
- **Course Mode:** Online
- **Course Fee:** ₹5000/- (Non-Refundable)

Register on www.resonance.ac.in
Toll Free: 1800 258 5555
7023003907, 7728850101 | 7340010333